

# FOUR YEARS EXPERIENCE IN USING AMPLITUDE INTEGRATED ELECTROENCEPHALOGRAPHY IN DAILY CLINICAL PRACTICE OF NEONATAL INTENSIVE CARE UNITS



Gabriel F. T. Variane<sup>1,2,3</sup>; Daniela P. Rodrigues<sup>1,2</sup>; Laura Tafner<sup>1</sup>; Maria Elisabeth L. Moreira<sup>5,6</sup>; Jofre O. Cabral<sup>5</sup>; Fernando F. Martins<sup>5</sup>; Alan Vieira<sup>5</sup>;

## Sayonara Drummond<sup>5</sup>; Viviane C. Moraes<sup>5</sup>; Helen Valmont<sup>5</sup>; Manoel Carvalho<sup>5</sup>; José Maria Lopes<sup>5,6</sup>

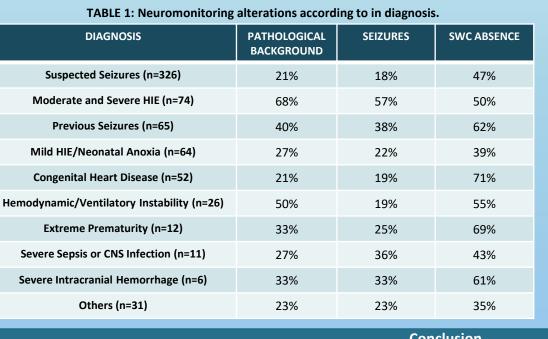
<sup>1</sup>Protecting Brains and Saving Futures Organization, São Paulo, Brazil; <sup>2</sup>Division of Neonatology, Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil; <sup>3</sup>Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil; <sup>4</sup>Pediatric Nursing Department, Escola Paulista de Enfermagem, Universidade Federal de São Paulo, Srazil; <sup>5</sup>Division of Neonatology, Maternidade Perinatal, Rio de Janeiro, Brazil; <sup>6</sup>Instituto Fernandes Figueiras – Fio Cruz, Rio de Janeiro, Brazil;

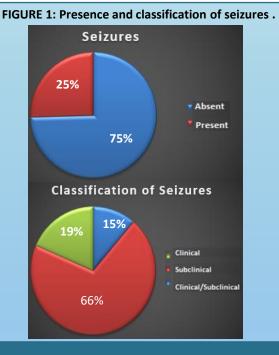
#### Introduction

Amplitude-integrated electroencephalography (aEEG) is a bedside, non-invasive, and simplified method of continuous neuromonitoring that allows the assessment of brain activity and function. Newer equipment can associate aEEG with raw EEG traces and video imaging (video aEEG/EEG) leading to a better accuracy. Neuromonitoring with video aEEG/EEG has shown to be useful in neonatal intensive care units (NICUs) since precise evaluation and early diagnosis of brain injury is important for accurate treatment and neurological impairment prevention.

# Objective

To describe video aEEG/EEG findings in high-risk newborns.


### Methods


Records of all infants monitored with threechannel video aEEG/EEG in a group of 5 hospitals from July/2017 to June/2021 were retrospectively evaluated. Bedside clinicians, guided by institutional protocol, defined the indication of neuromonitoring clinically. Indication of monitored infants, aEEG background activity, sleep-wake cycle (SWC), and seizures were evaluated. All exams were remotely accessed in real time by 4 experienced readers.

Contact: jlopesma@perinatal.com.br

687 infants were included in this study with a total of 34,172 monitoring hours. 385(57%) were male and 481(75%) were born by C-section. Gestational age varied from 22 to 42 weeks and birth weight from 360g to 4880g. Most common diagnosis for monitoring indications were suspected seizures (326;20%) moderate and severe HIE (74;11%), previous seizures (65;9%), mild HIE/neonatal anoxia (64;9%), and congenital heart disease (52;8%). Pathological background activity was found in 210(31%) of monitored infants, and SWC was absent in 417(61%). Seizures were found in 175(25%) infants, being 66% subclinical, 19% clinical, and 15% clinical followed by subclinical (Figures 1). The incidence of alterations in neuromonitoring was greater when evaluating specific groups of diagnosis (Table 1).

Results





#### Conclusion

Implementation of video aEEG/EEG accessed remotely by experienced users was an especially useful bedside tool to evaluate real time brain function, placing a great role on early diagnosis and treatment, potentially improving outcomes. Pathological background activity and subclinical seizures were frequent in the studied group. Neuromonitoring may be a very suitable strategy for prevention of brain injury in high-risk newborns in many clinical situations.